HT63

MANUAL DE INSTRUÇÕES

((

© Copyright HT ITALIA 2016 Versão PT 1.02 de 25/01/2016

	<u>lice:</u>	
1.	PRECAUÇÕES E MEDIDAS DE SEGURANÇA	2
	1.1. Instruções preliminares	2
	1.2. Durante a utilização	
	1.3. Após a utilização	
	1.4. Definição de Categoria de medida (Sobretensão)	
2	DESCRIÇÃO GERAL	
	2.1. Intrumentos de medida de Valor médio e de Valor eficaz real	⊿
	2.2. Definição de Valor eficaz real e Fator de crista	
3	PREPARAÇÃO PARA A SUA UTILIZAÇÃO	
J.	3.1. Controlos iniciais	
	3.2. Alimentação do intrumento	
	3.3. Calibragem	
	3.4. Armazenamento	
1	INSTRUÇÕES DE FUNCIONAMENTO	
4.		
	4.1. Descrição do intrumento	
	4.1.1. Descrição dos comandos	
	4.2. Descrição dos botões de funções	/
	4.2.2. Botão RANGE	
	4.2.3. Botão MAX MIN/PEAK	
	4.2.4. Botão Hz%/REL∆	
	4.2.5. Botão MODE	
	4.2.6. Botão HIRES	
	4.2.7. Desativação da função de Desligar Automático	
	4.3. Descrição das funções do seletor	
	4.3.1. Medição de Tensões CC	
	4.3.2. Medição de Tensões CA	
	4.3.3. Medição de Frequência e Ciclo de Trabalho (Duty Cycle)	
	4.3.4. Medição de Resistências e Teste de Continuidade	
	4.3.5. Teste de Díodos	
	4.3.6. Medição de Capacidades	
	4.3.7. Medição de Temperaturas com sonda K	ID
	4.3.9. Medição de Corrente CA	10
5.	· ~	
	5.1. Substituição das baterias e fusíveis internos	
	5.2. Limpeza do intrumento	
	5.3. Fim de vida	
6	ESPECIFICAÇÕES TÉCNICAS	10 10
О.		
	5.1. Características Técnicas	
	6.1.1. Normas de referência	
	6.2. Ambiente	
	6.2.1. Condições ambientais de utilização	ı ک 21
	6.3. Acessórios	
	6.3.1. Acessórios fornecidos	
	6.3.2. Acessórios opcionais	
7.		
•	7.1. Condições de garantia	
	7.2. Assistência	
	. IEI - 7 100:010:10114	

1. PRECAUÇÕES E MEDIDAS DE SEGURANÇA

Este instrumento foi construído em conformidade com a diretiva IEC/EN61010-1 referente aos instrumentos de medida eletrónicos. Para Sua segurança e para evitar danificar o instrumento, deve seguir os procedimentos descritos neste manual e ler com especial atenção todas as notas precedidas do símbolo ...

Antes e durante a execução das medições seguir escrupulosamente as seguintes indicações:

- Não efetuar medições em ambientes húmidos
- Não efetuar medições na presença de gases ou materiais explosivos, combustíveis ou em ambientes com pó
- Evitar contactos com o circuito em exame quando não se efetuam medições
- Evitar contactos com partes metálicas expostas, com terminais de medida inutilizados, circuitos, etc
- Não efetuar qualquer medição quando se detetam anomalias no instrumento tais como: deformações, roturas, derrame de substâncias, ausência de display, etc
- Ter particular atenção quando se efetuam medições de tensões superiores a 20V visto que existe o risco de choques elétricos.

Neste manual e no instrumento são utilizados os seguintes símbolos:

Atenção: seguir as instruções indicadas no manual; um uso impróprio poderá causar danos no instrumento ou nos seus componentes

Instrumento com duplo isolamento

Tensão CA ou Corrente CA

Tensão ou Corrente CC

Referência de terra

1.1. INSTRUÇÕES PRELIMINARES

- Este instrumento foi projetado para ser utilizado em ambientes com nível de poluição
- Pode ser utilizado para efetuar medições de TENSÃO e CORRENTE em instalações com CAT IV 600V, CAT III 1000V
- Seguir as normais regras de segurança previstas para os trabalhos sob tensão e a utilizar os DPI previstos orientados para a proteção contra correntes perigosas e proteger o instrumento contra uma utilização errada
- Nos casos em que a falta de indicação da presença de tensão possa constituir um risco para o operador, efetuar sempre uma medição de continuidade antes de efetuar a medição sob tensão para confirmar se a ligação está correta e o estado das ponteiras
- Só as ponteiras fornecidas com o instrumento garantem as normas de segurança.
 Estas devem estar em boas condições e substituídas, se necessário, por modelos idênticos.
- Não efetuar medições em circuitos que superem os limites de tensão especificados
- Não efetuar medições em condições ambientais fora dos limites indicados no § 6.2.1
- Verificar se a bateria está inserida corretamente
- Verificar se o display LCD e o seletor indicam a mesma função

1.2. DURANTE A UTILIZAÇÃO

Ler atentamente as recomendações e as instruções seguintes:

ATENÇÃO

O não cumprimento das Advertências e/ou Instruções pode danificar o instrumento e/ou os seus componentes ou colocar em perigo o operador.

- Antes de mexer no seletor, retirar as ponteiras de medida do circuito em exame
- Quando o instrumento está conectado ao circuito em exame nunca tocar em qualquer terminal inutilizado
- Evitar a medição de resistências na presença de tensões externas. Mesmo que o instrumento esteja protegido, uma tensão excessiva poderá causar um mau funcionamento do mesmo
- Se, durante uma medição, o valor ou o sinal da grandeza em exame permanecem constantes, verificar se está ativa a função HOLD.

1.3. APÓS A UTILIZAÇÃO

- Depois de terminar as medições, colocar o seletor em OFF de modo a desligar o instrumento
- Quando se prevê não utilizar o instrumento durante um longo período retirar as baterias.

1.4. DEFINIÇÃO DE CATEGORIA DE MEDIDA (SOBRETENSÃO)

A norma CEI 61010-1: Prescrições de segurança para aparelhos elétricos de medida, controlo e para utilização em laboratório, Parte 1: Prescrições gerais, define o que se entende por categoria de medida, vulgarmente chamada categoria de sobretensão. No parágrafo 6.7.4: Circuitos de medida, indica:

(OMISSOS)

os circuitos estão subdivididos nas seguintes categorias de medida:

- A categoria de medida IV serve para as medições efetuadas sobre uma fonte de uma instalação de baixa tensão.
 - o Exemplo: contadores elétricos e de medida sobre dispositivos primários de proteção das sobrecorrentes e sobre a unidade de regulação da ondulação.
- A categoria de medida III serve para as medições efetuadas em instalações interiores de edifícios.
 - Exemplo: medições sobre painéis de distribuição, disjuntores, cablagens, incluídos os cabos, os barramentos, as caixas de junção, os interruptores, as tomadas das instalações fixas e os aparelhos destinados ao uso industrial e outras aparelhagens, por exemplo os motores fixos com ligação à instalação fixa.
- A categoria de medida II serve para as medições efetuadas em circuitos ligados diretamente às instalações de baixa tensão.
 - Exemplo: medições em aparelhagens para uso doméstico, utensílios portáteis e aparelhos similares.
- A categoria de medida I serve para as medições efetuadas em circuitos não ligados diretamente à REDE DE DISTRIBUIÇÃO.

Exemplo: medições sobre não derivados da REDE e derivados da REDE mas com proteção especial (interna). Neste último caso, as solicitações de transitórios são variáveis, por este motivo (OMISSOS) torna-se necessário que o utente conheça a capacidade de resistência aos transitórios por parte da aparelhagem.

2. DESCRIÇÃO GERAL

O instrumento executa as seguintes medições:

- Tensão CC
- Tensão CA TRMS
- Corrente CC
- Visualização 4-20mA%
- Corrente CA TRMS
- Resistência e Teste de Continuidade
- Teste de Díodos
- Capacidade
- Frequência da corrente e tensão
- Ciclo de Trabalho (Duty Cycle)
- Temperatura com sonda K

Cada uma destas funções pode ser selecionada através do respetivo seletor. Além disso, existem os botões de funções (consultar o § 4.2), gráfico de barras analógico e retroiluminação. O instrumento também possui a função de Desligar Automático (desativável) que desliga automaticamente o instrumento decorridos cerca de 15 minutos da última pressão dos botões de funções ou rotação do seletor. Para voltar a ligar o instrumento rodar o seletor.

2.1. INTRUMENTOS DE MEDIDA DE VALOR MÉDIO E DE VALOR EFICAZ REAL

Os instrumentos de medida de grandezas alternadas dividem-se em duas grandes famílias:

- Instrumentos de VALOR MÉDIO: instrumentos que medem apenas o valor da onda à frequência fundamental (50 ou 60 HZ)
- Instrumentos de VALOR EFICAZ REAL também ditos TRMS (True Root Mean Square value): instrumentos que medem o valor eficaz real da grandeza em exame.

Na presença de uma onda perfeitamente sinusoidal, as duas famílias de instrumentos fornecem resultados idênticos. Na presença de ondas distorcidas, ao contrário, as leituras diferem. Os instrumentos de valor médio fornecem apenas o valor eficaz da onda fundamental, os instrumentos de valor eficaz real fornecem, por sua vez, o valor eficaz de toda a onda, harmónicos incluídos (dentro da banda passante do instrumento). Portanto, medindo a mesma grandeza com instrumentos das duas famílias, os valores obtidos só são idênticos se a onda é puramente sinusoidal, no caso de ser distorcida, os instrumentos de valor eficaz real fornecem valores superiores em relação às leituras dos instrumentos de valor médio.

2.2. DEFINIÇÃO DE VALOR EFICAZ REAL E FATOR DE CRISTA

O valor eficaz para a corrente é assim definido: "Num tempo igual a um período, uma corrente alterna com valor eficaz da intensidade de 1A, circulando sobre uma resistência, dissipa a mesma energia que seria dissipada, no mesmo tempo, por uma corrente contínua com intensidade de 1A". Desta definição obtém-se a expressão numérica:

$$G = \sqrt{\frac{1}{T}} \int_{t_0}^{t_0+T} g^2(t) dt$$
 O valor eficaz é indicado como RMS (root mean square value)

O Fator de crista é definido como a razão entre o Valor de Pico de um sinal e o seu Valor Eficaz: CF (G)= $\frac{G_p}{G_{RMS}}$ Este valor varia com a forma de onda do sinal, para uma onda

puramente sinusoidal é $\sqrt{2}$ =1.41. Na presença de distorções, o Fator de crista assume valores tanto maiores quanto mais elevada for a distorção da onda

3. PREPARAÇÃO PARA A SUA UTILIZAÇÃO

3.1. CONTROLOS INICIAIS

O instrumento, antes de ser expedido, foi controlado do ponto de vista elétrico e mecânico. Foram tomadas todas as precauções possíveis para que o instrumento seja entregue sem danos.

Todavia, aconselha-se a efetuar uma verificação geral ao instrumento para se certificar de possíveis danos ocorridos durante o transporte. No caso de se detetarem anomalias, deve-se contactar, imediatamente, o fornecedor.

Verificar, ainda, se a embalagem contém todos os componentes indicados no § 6.3.1. No caso de discrepâncias, contactar o fornecedor.

Se, por qualquer motivo, for necessário devolver o instrumento, deve-se seguir as instruções indicadas no § 7.

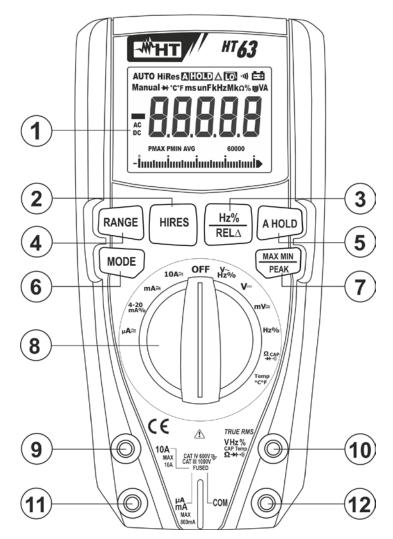
3.2. ALIMENTAÇÃO DO INTRUMENTO

O instrumento é alimentado com 4x1.5V baterias alcalinas tipo AAA IEC LR03 incluídas na embalagem. Quando as baterias estão descarregadas aparece no display o símbolo "= +". Para substituir/inserir a bateria consultar o § 5.1.

3.3. CALIBRAGEM

O instrumento respeita as características técnicas indicadas neste manual. As prestações do instrumento são garantidas durante um ano da data de aquisição.

3.4. ARMAZENAMENTO


Para garantir medições precisas, após um longo período de armazenamento em condições ambientais extremas, deve-se aguardar que o instrumento retorne às condições normais (ver as especificações ambientais listadas no § 6.2.1).

4. INSTRUÇÕES DE FUNCIONAMENTO

4.1. DESCRIÇÃO DO INTRUMENTO

4.1.1. Descrição dos comandos

LEGENDA:

- 1. Display LCD
- 2. Botão HIRES
- 3. Botão Hz% / RELA
- 4. Botão RANGE
- 5. Botão A HOLD
- 6. Botão MODE
- 7. Botão MAXMIN/PEAK
- 8. Seletor de funções
- 9. Terminal de entrada 10A
- 10. Terminal de entrada VHz%CAPTempΩ→I・¹))
- 11.Terminal de entrada **mAμA**
- 12. Terminal de entrada COM

Fig. 1: Descrição do instrumento

4.2. DESCRIÇÃO DOS BOTÕES DE FUNÇÕES

4.2.1. Botão A HOLD

A pressão do botão **A HOLD** ativa a manutenção do valor da grandeza apresentada no display. A seguir à pressão deste botão aparece no display a inscrição "HOLD". Premir novamente o botão **HOLD** para sair da função.

Premir durante algum tempo o botão A HOLD para ativar/desativar a função de "AutoHOLD". A mensagem "A HOLD" aparece no display. Com esta função ativa o instrumento executa a manutenção do valor da grandeza atualizando-o no display automaticamente quando um novo valor estável é detetado e emitindo um som durante a operação. Esta função é útil no caso de sinais na entrada tendo rápidas oscilações.

4.2.2. Botão RANGE

Premir o botão **RANGE** para ativar o modo manual desativando a função de Escala Automática (Autorange). O símbolo "AUTO" desaparece da parte superior esquerda do display. No modo manual premir o botão **RANGE** para alterar a escala de medida notando o deslocamento do respetivo ponto decimal. O botão **RANGE** não fica ativo nas posições \rightarrow , ·n), **CAP**, **Hz%**, **Temp°C°F** e **4-20mA%**. No modo Escala Automática (Autorange) o instrumento seleciona a escala mais apropriada para efetuar a medição. Se uma leitura é mais alta do que o valor máximo mensurável, aparece no display a indicação "**O.L**". Premir o botão **RANGE** durante mais de 1 segundo para sair do modo manual e retornar ao modo Escala Automática.

4.2.3. Botão MAX MIN/PEAK

Uma pressão do botão **MAX MIN/PEAK** ativa a deteção dos valores máximo (MAX), mínimo (MIN) e médio (AVG) da grandeza em exame. Os valores são atualizados continuamente e apresentam-se ciclicamente após uma nova pressão do mesmo botão. O botão **MAX MIN/PEAK** não funciona quando a função HOLD está ativa. O botão **MAX MIN/PEAK** não está ativo nas posições +, •)), CAP, Hz%, Temp°C°F e 4-20mA%. Premir o botão **MAX MIN/PEAK** durante mais de 1 segundo ou mexer no seletor para sair da função.

Uma pressão prolongada durante 2 segundos do botão **MAX MIN/PEAK** ativa a deteção dos valores de pico Máximo e Mínimo da Tensão e Corrente CA com tempo de resposta 1ms. Os valores são atualizados continuamente e apresentam-se ciclicamente após uma nova pressão do mesmo botão. O display apresenta o símbolo associado à função selecionada: "PMAX" para o valor de pico máximo, "PMIN" para o valor de pico mínimo. E a função de Desligar Automático (Auto Power OFF) é automaticamente desativada.

Premir o botão **MAX MIN/PEAK** durante mais de 2 segundos ou mexer no seletor para sair da função

4.2.4. Botão Hz%/REL∆

Premir o botão Hz%/RELΔ para a seleção das medições de frequência e Ciclo de Trabalho (Duty Cycle) nas posições V~Hz%, 10AHz%, mA (CA), μΑ (CA) e Hz% do seletor. A escala de frequência é diferente nas várias posições.

A pressão prolongada do botão **Hz%/REL**Δ permite a ativação da medição relativa. O instrumento coloca em zero o display e guarda o valor apresentado o qual será o valor de referência para as medições seguintes. O símbolo "Δ" aparece no display. Esta função não está ativa nas medições ➡, •)), Hz%, Temp°C°F e 4-20mA%. Premir novamente, durante algum tempo, o botão Hz%/RELΔ para sair da função

4.2.5. Botão MODE

A pressão do botão **MODE** permite a seleção de uma dupla função existente no seletor. Em especial ele está ativo na posição **ΩCAP→+・))** para a seleção das medições de Teste de Díodos, Teste de Continuidade, capacidade e a medição de resistência, na posição **Temp°C°F** para a seleção da medição de temperatura em °C ou °F e **mA**, μ**A** para a seleção das medições CA ou CC.

Na posição **V~Hz%** a pressão do botão **MODE** ativa/desativa a função "**IDI**" que permite a leitura da tensão CA com um filtro passa baixo capaz de reduzir os efeitos de distúrbio no sinal. Nesta condição o instrumento passa para a modalidade Manual.

4.2.6. Botão HIRES

Premir o botão **HIRES** para ativar/desativar o modo de funcionamento em alta resolução do instrumento e a mensagem "HiRes" aparece no display. Nesta situação o instrumento passa a 4½ dígitos (60000 pontos) para um maior detalhe na leitura dos dados. A função não está ativa na posição **Temp°C°F** e na medição de capacidade. Premir novamente o botão **HIRES** para voltar à visualização standard de 3½ dígitos (6000 pontos)

4.2.7. Desativação da função de Desligar Automático

Para preservar as baterias internas, o instrumento desliga-se automaticamente após cerca de 15 minutos de não utilização. Para desativar o desligar automático proceder do seguinte modo:

- Desligar o instrumento (OFF)
- Mantendo premido o botão MODE ligar o instrumento rodando o seletor. A mensagem "10FF" aparece no display
- Desligar e voltar a ligar o instrumento para ativar novamente a função

4.3. DESCRIÇÃO DAS FUNÇÕES DO SELETOR

4.3.1. Medição de Tensões CC

ATENÇÃO

A tensão máxima CC na entrada é 1000V. Não medir tensões que excedam os limites indicados neste manual. A superação dos limites de tensão poderá causar choques elétricos no utilizador e danos no instrumento.

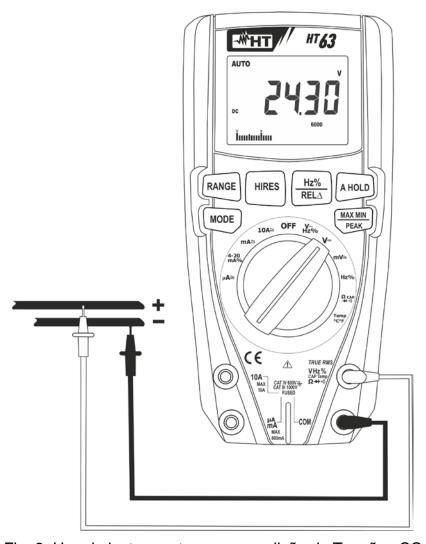


Fig. 2: Uso do instrumento para a medição de Tensões CC

- Selecionar a posição V_→ ou mV
- 2. Inserir o cabo vermelho no terminal de entrada VHz%CAPTempΩ→→・・・) e o cabo preto no terminal de entrada COM
- 3. Colocar a ponteira vermelha e a ponteira preta respetivamente nos pontos com potencial positivo e negativo do circuito em exame (ver Fig. 2). O valor da tensão é apresentado no display
- 4. Se no display aparecer a mensagem "O.L" selecionar uma escala mais elevada.
- 5. A visualização do símbolo "-" no display do instrumento indica que a tensão tem sentido oposto em relação à conexão da Fig. 2.
- 6. Para o uso das funções HOLD, RANGE, MAX MIN, REL∆ e HIRES consultar o § 4.2

4.3.2. Medição de Tensões CA

ATENÇÃO

A tensão máxima CA na entrada é 1000V. Não medir tensões que excedam os limites indicados neste manual. A superação dos limites de tensão poderá causar choques elétricos no utilizador e danos no instrumento.

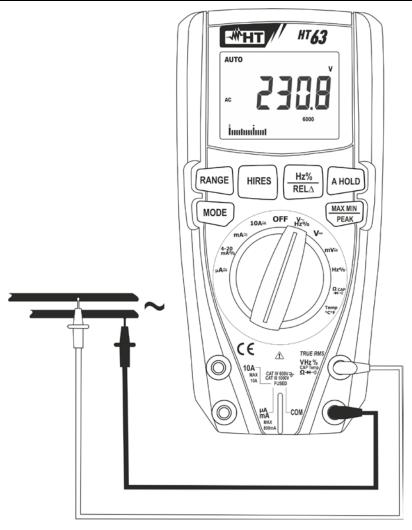


Fig. 3: Uso do instrumento para a medição de Tensões CA

- 2. Na posição **mV** premir o botão **MODE** para visualizar o símbolo "CA" no display
- 3. Inserir o cabo vermelho no terminal de entrada VHz%CAPTempΩ-→+・)) e o cabo preto no terminal de entrada COM
- 4. Colocar a ponteira vermelha e a ponteira preta respetivamente nos pontos do circuito em exame (ver Fig. 3). O valor da tensão é apresentado no display
- 5. Se no display aparecer a mensagem "O.L" selecionar uma escala mais elevada
- 6. Premir o botão Hz%/REL∆ para selecionar as medições "Hz" ou "%" para visualizar os valores da frequência e do Ciclo de Trabalho (Duty Cycle) da tensão na entrada. A barra gráfica não está ativa nestas funções. Premir o botão MODE para voltar à medição de tensão e ativar eventualmente a função
- 7. Para o uso das funções HOLD, RANGE, MAX MIN, PEAK, e HIRES e REL consultar o § 4.2

4.3.3. Medição de Frequência e Ciclo de Trabalho (Duty Cycle)

ATENÇÃO

A tensão máxima CA na entrada é 1000V. Não medir tensões que excedam os limites indicados neste manual. A superação dos limites de tensão poderá causar choques elétricos no utilizador e danos no instrumento.

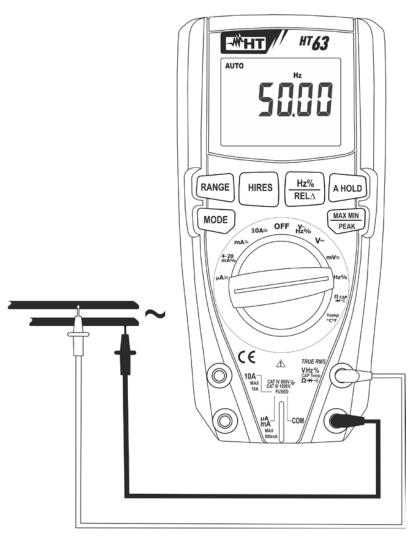


Fig. 4: Uso do instrumento para a medição de Frequências e Ciclo de Trabalho (Duty Cycle)

- 1. Selecionar a posição Hz%
- 2. Premir o botão **Hz%** para selecionar as medições "**Hz**" ou "%" para visualizar os valores da frequência e do Ciclo de Trabalho (Duty Cycle) da tensão na entrada
- 3. Inserir o cabo vermelho no terminal de entrada VHz%CAPTempΩ→→) (HT62) e o cabo preto no terminal de entrada COM
- 4. Colocar a ponteira vermelha e a ponteira preta respetivamente nos pontos do circuito em exame (ver Fig. 4). O valor da frequência (Hz) ou Ciclo de Trabalho (Duty Cycle) (%) é apresentado no display. A barra gráfica não está ativa nestas funções
- 5. Se no display aparecer a mensagem "O.L" selecionar uma escala mais elevada
- 6. Para o uso da função HOLD e HIRES consultar o § 4.2

4.3.4. Medição de Resistências e Teste de Continuidade

\triangle

ATENÇÃO

Antes de efetuar qualquer Medição de Resistências verificar se o circuito em exame não está a ser alimentado e se eventuais condensadores presentes estão descarregados.

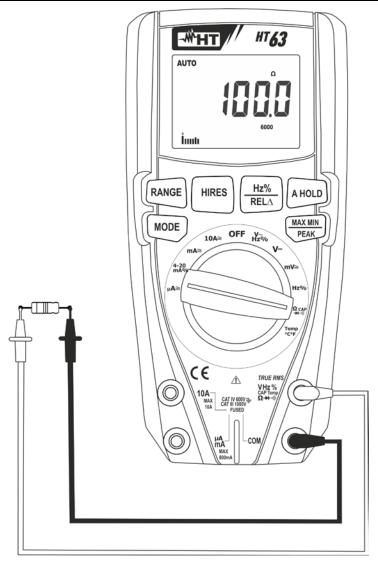


Fig. 5: Uso do instrumento para a medição de Resistências e Teste de Continuidade

- 1. Selecionar a posição ΩCAP-→I・リ)
- Colocar as ponteiras nos pontos pretendidos do circuito em exame (ver Fig. 5). O valor da resistência é apresentado no display
- 4. Se no display aparecer a mensagem "O.L" selecionar uma escala mais elevada
- 5. Premir o botão **MODE** para selecionar a medição """ relativa ao Teste de Continuidade e colocar as ponteiras nos pontos pretendidos do circuito em exame
- 6. O valor da resistência (só indicativo) é apresentado no display expresso em Ω e o instrumento emite um sinal acústico quando o valor da resistência for <35 Ω
- 7. Para o uso das funções HOLD, RANGE, MAX MIN, REL∆ e HIRES consultar o § 4.2

4.3.5. Teste de Díodos

ATENÇÃO

Antes de efetuar qualquer medição de resistência verificar se o circuito em exame não está a ser alimentado e se eventuais condensadores presentes estão descarregados.

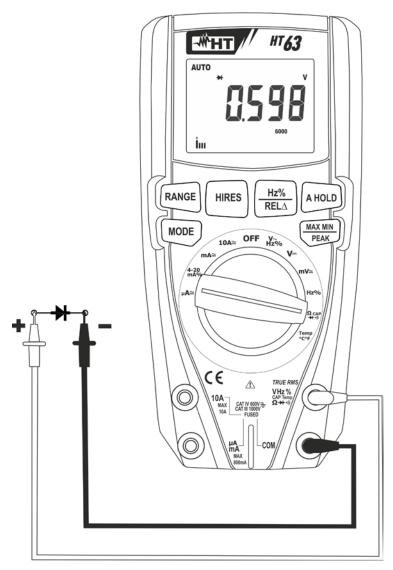


Fig. 6: Uso do instrumento para o Teste de Díodos

- Selecionar a posição ΩCAP→→)
- 2. Premir o botão MODE para selecionar a medição "→ "
- 3. Inserir o cabo vermelho no terminal de entrada VHz%CAPTempΩ-→+**) e o cabo preto no terminal de entrada COM
- Colocar as ponteiras nas extremidades do díodo em exame (ver Fig. 6) respeitando as polaridades indicadas. O valor da tensão do patamar em polarização direta é apresentado no display
- 5. Se o valor do patamar de tensão for 0mV a junção P-N do díodo está em curto-circuito
- 6. Se o instrumento apresenta a mensagem "**O.L**" os terminais do díodo estão invertidos em relação ao indicado na Fig. 6 ou a junção P-N do díodo está danificada
- 7. Para o uso das funções HOLD e HIRES consultar o § 4.2

4.3.6. Medição de Capacidades

ATENÇÃO

Antes de efetuar medições de capacidade em circuitos ou condensadores, retirar a alimentação ao circuito em exame e deixar descarregar todas as capacidades presentes no mesmo. Na ligação entre o multímetro e a capacidade em exame respeitar a correta polaridade (quando solicitado).

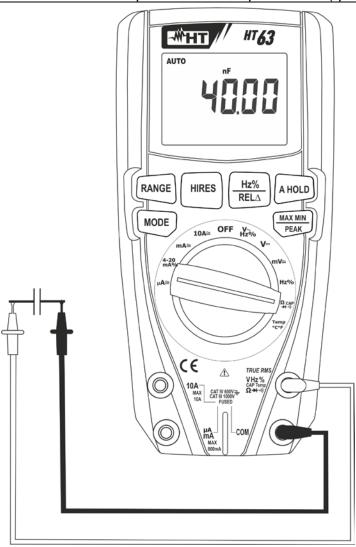


Fig. 7: Uso do instrumento para a medição de Capacidades

- 1. Selecionar a posição ΩCAP-→۱・
))
- 2. Premir o botão MODE até visualizar o símbolo "nF" no display
- 3. Inserir o cabo vermelho no terminal de entrada VHz%CAPTempΩ→→) e o cabo preto no terminal de entrada COM
- 4. Premir o botão **REL/**Δ antes de efetuar a medição
- 5. Colocar as ponteiras nas extremidades do condensador em exame respeitando eventualmente as polaridades positivas (cabo vermelho) e negativas (cabo preto) (ver Fig. 7). O valor da capacidade é apresentado no display. A barra gráfica não está ativa nesta função
- 6. A mensagem "O.L." indica que o valor da capacidade excede o valor máximo mensurável
- 7. Para o uso das funções HOLD, e REL∆ consultar o § 4.2

4.3.7. Medição de Temperaturas com sonda K

ATENÇÃO

Antes de efetuar qualquer medição de temperatura verificar se o circuito em exame não está a ser alimentado e se eventuais condensadores presentes estão descarregados.

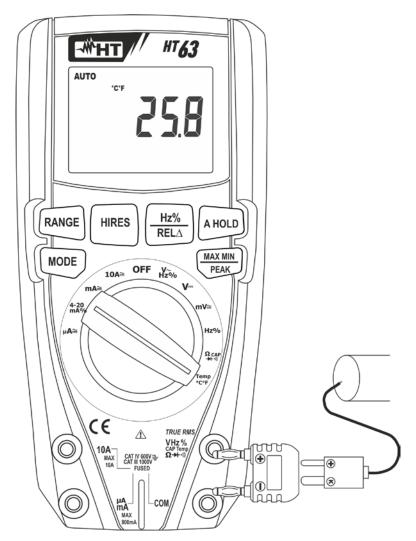


Fig. 8: Uso do instrumento para a medição de Temperaturas

- 1. Selecionar a posição Temp°C°F
- 2. Premir o botão MODE até aparecer no display o símbolo "°C" ou "°F"
- 3. Inserir o adaptador fornecido nos terminais de entrada VHz%CAPTempΩ→→·

 (polaridade +) e COM (polaridade -) (ver Fig. 8)
- 4. Ligar a sonda tipo K fornecida ou o termopar tipo K opcional (ver § 6.3.2) ao instrumento através do adaptador respeitando as polaridades positiva e negativa presentes no mesmo. O valor da temperatura é apresentado no display. A barra gráfica não está ativa nesta função
- 5. A mensagem "O.L." indica que o valor de temperatura excede o valor máximo mensurável
- 6. Para o uso da função HOLD consultar o § 4.2

4.3.8. Medição de Correntes CC e leitura 4-20mA%

ATENÇÃO

A corrente máxima CC na entrada é 10A (entrada **10A**) ou 600mA (entrada **mAμA**). Não medir correntes que excedam os limites indicados neste manual. A superação dos limites de corrente poderá causar choques elétricos no utilizador e danos no instrumento.

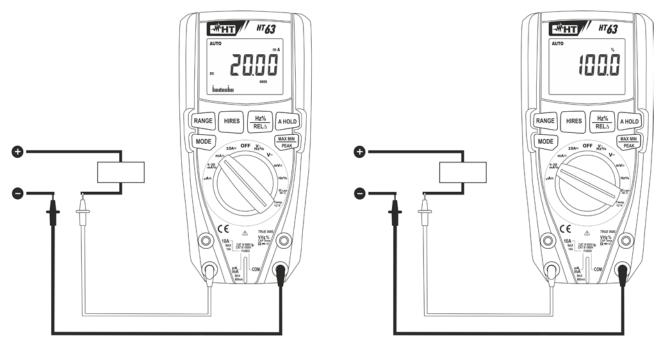


Fig. 9: Uso do instrumento para a medição de Correntes CC e leitura 4-20mA%

- 1. Retirar a alimentação ao circuito em exame.
- Selecionar a posição μΑ:, mA: ou 10A: para a medição de correntes CC ou a posição 4-20mA% para a leitura 4-20mA%
- 3. Inserir o cabo vermelho no terminal de entrada 10A ou no terminal de entrada $mA\mu A$ e o cabo preto no terminal de entrada COM
- 4. Ligar a ponteira vermelha e a ponteira preta em série com o circuito do qual se pretende medir a corrente respeitando a polaridade e o sentido da corrente (ver Fig. 9)
- 5. Alimentar o circuito em exame
- 6. O valor da corrente CC (ver Fig. 9 lado esquerdo) é apresentado no display
- 7. O valor da leitura 4-20mA% (0mA = -25%, 4mA = 0%, 20mA = 100% e 24mA = 125%) (ver Fig. 9 lado direito) é apresentado no display. A barra gráfica não está ativa nesta função
- 8. Se no display aparecer a mensagem "O.L" foi atingido o valor máximo mensurável
- 9. A visualização do símbolo "-" no display do instrumento indica que a corrente tem sentido oposto em relação à conexão da Fig. 9
- 10. Para o uso das funções HOLD, RANGE, MAX MIN, REL∆ e HIRES consultar o § 4.2

4.3.9. Medição de Corrente CA

ATENÇÃO

A corrente máxima CA na entrada é 10A (entrada **10A**) ou 600mA (entrada **mAμA**). Não medir correntes que excedam os limites indicados neste manual. A superação dos limites de corrente poderá causar choques elétricos no utilizador e danos no instrumento.

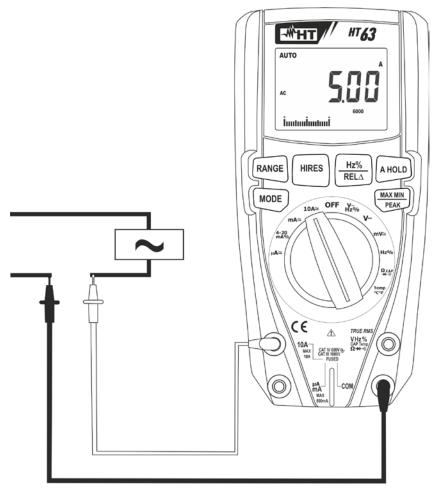


Fig. 10: Uso do instrumento para a medição de Correntes CA

- 1. Retirar a alimentação ao circuito em exame.
- Selecionar a posição µA≃, mA≃ ou 10A≃
- 3. Premir o botão **MODE** para selecionar a medição "CA"
- 4. Inserir o cabo vermelho no terminal de entrada **10A** ou no terminal de entrada **mA\muA** e o cabo preto no terminal de entrada **COM**
- 5. Ligar a ponteira vermelha e a ponteira preta em série com o circuito do qual se pretende medir a corrente (ver Fig. 10)
- 6. Alimentar o circuito em exame. O valor da corrente é apresentado no display.
- 7. Se no display aparecer a mensagem "O.L" foi atingido o valor máximo mensurável
- 8. Premir o botão Hz%/REL∆ para selecionar as medições "Hz" ou "%" para visualizar os valores da frequência e do Ciclo de Trabalho (Duty Cycle) da corrente na entrada. A barra gráfica não está ativa nestas funções
- Para o uso das funções HOLD, RANGE, MAX MIN, PEAK, REL∆ e HIRES consultar o § 4.2

5. MANUTENÇÃO

ATENÇÃO

- Só técnicos qualificados podem efetuar as operações de manutenção.
 Antes de efetuar esta operação retirar todos os cabos dos terminais de entrada
- Não utilizar o instrumento em ambientes caracterizados por taxas de humidade ou temperatura elevadas. Não o expor diretamente à luz solar
- Desligar sempre o instrumento após a sua utilização. Quando se prevê não o utilizar durante um período prolongado, retirar a bateria para evitar o derrame de líquidos por parte desta última que podem danificar os circuitos internos do instrumento

5.1. SUBSTITUIÇÃO DAS BATERIAS E FUSÍVEIS INTERNOS

Quando no display LCD aparece o símbolo "==== deve-se substituir as baterias.

Substituição das baterias

- 1. Colocar o seletor na posição OFF e retirar os cabos dos terminais de entrada
- 2. Rodar o parafuso de fixação da tampa do compartimento da bateria da posição "o" para a posição "o" e retirar a mesma
- 3. Retirar a bateria e inserir no compartimento a nova bateria do mesmo tipo (ver § 6.1.2) respeitando as polaridades indicadas
- 4. Recolocar a tampa do compartimento da bateria e rodar o parafuso de fixação da tampa do compartimento da bateria da posição "f" para a posição "f"
- 5. Não dispersar no ambiente as baterias utilizadas. Usar os respetivos contentores para a sua reciclagem

Substituição fusíveis

- 1. Colocar o seletor na posição OFF e retirar os cabos dos terminais de entrada
- 2. Rodar o parafuso de fixação da tampa do compartimento da bateria da posição "o" para a posição "o" e retirar a mesma
- 3. Retirar o fusível danificado, inserir um do mesmo tipo (ver § 6.1.2)
- 4. Recolocar a tampa do compartimento da bateria e rodar o parafuso de fixação da tampa do compartimento da bateria da posição "f" para a posição "f"

5.2. LIMPEZA DO INTRUMENTO

Para a limpeza do instrumento utilizar um pano macio e seco. Nunca usar panos húmidos, solventes, água, etc.

5.3. FIM DE VIDA

ATENÇÃO: este símbolo indica que o equipamento, os seus acessórios e a pilha devem ser recolhidos separadamente e tratados de modo correto.

6. ESPECIFICAÇÕES TÉCNICAS

6.1. CARACTERÍSTICAS TÉCNICAS

Precisão calculada como [%leitura + (nº. Dígitos (dgt)*resolução)] a 18°C ÷ 28°C <75%HR

Tensão CC

Escala	Resolução	Precisão	Impedância de entrada	Proteção contra sobrecargas
600.0mV	0.1mV			
6.000V	0.001V	±(0.9%leitura + 5dgt)	>10MΩ	1000VCC/CArms
60.00V	0.01V			
600.0V	0.1V			
1000V	1V	±(1.2%leitura + 5dgt)		

Tensão CA TRMS

Facala	Decelueão	Precis	Proteção contra	
Escala	Resolução	(50Hz÷1kHz)	(1kHz÷5kHz)	sobrecargas
600.0mV	0.1mV			
6.000V	0.001V	±(1.0%leitura + 5dgt)	1/2 00/10:turn 1 Edat)	
60.00V	0.01V		\pm (3.0%leitura + 5dgt)	1000VCC/CArms
600.0V	0.1V			
1000V	1V		Não especificada	

^(*) Precisão especificada de 5% a 100% da escala de medida, Impedância de entrada: $> 10 M\Omega$

Precisão da função PEAK: ±10% leitura; Tempo de resposta da função PEAK: 1ms

Corrente CC

Escala	Resolução	Precisão	Proteção contra sobrecargas
600.0μΑ	0.1μΑ	±(1.5%leitura + 5dgt)	
6000μΑ	1μΑ		Fusível rápido 800mA/1000V
60.00mA	0.01mA		rusivei rapido oddina/ rodov
600.0mA	0.1mA		
10.00A	0.01A		Fusível rápido 10A/1000V

Corrente CA TRMS

Escala	Resolução	Precis	ão (*)	Protocão contro cobreceras
ESCala	Resolução	(50Hz÷1kHz)	(1kHz÷5kHz)	Proteção contra sobrecargas
600.0μΑ	0.1μΑ		±(3.5%leitura+5dgt)	Fusível rápido 800mA/1000V
6000μΑ	1μΑ			
60.00mA	0.01mA	\pm (2.5%leitura + 5dgt)		
600.0mA	0.1mA			
10.00A	0.01A			Fusível rápido 10A/1000V

^(*) Precisão especificada de 5% a 100% da escala de medida

Precisão da função PEAK: ±10%leitura

Leitura 4-20mA%

Escala	Resolução	Precisão	Correspondência
-25%÷125%	0.1%	±(50dgt)	0mA=-25%, 4mA=0%, 20mA=100%, 24mA=125%

Teste de Díodos

Função	Corrente de teste	Tensão Max em circuito aberto
→	<1.5mA	2.8VCC

Precisão da função \bigcirc : \pm (1.5%leitura + 5dgt) (f \leq 60Hz), \pm (3.0%leitura + 5dgt) (60Hz \leq f \leq 1kHz), não especificada (f: 1 \div 5kHz)

Resistência e Teste de Continuidade

Escala	Resolução	Precisão	Besouro	Proteção contra sobrecargas	
600.0Ω	0.1Ω	±(2.0%leitura + 9dgt)			
6.000 k Ω	0.001kΩ	±(1.2%leitura + 5dgt)			
60.00kΩ	0.01kΩ		<35Ω	1000VCC/CArms	
600.0kΩ	0.1kΩ		<3322	1000 V CC/CAITIS	
$6.000 \mathrm{M}\Omega$	$0.001 \mathrm{M}\Omega$	±(2.0%leitura + 10dgt)			
$60.00 \mathrm{M}\Omega$	0.01ΜΩ				

Frequência (circuitos elétricos)

Escala	Resolução	Precisão	Proteção contra sobrecargas
40.00Hz ÷ 10kHz	0.01Hz	±(0.5%leitura)	1000VCC/CArms

Sensibilidade: 15Vrms

Frequência (circuitos eletrónicos)

Escala	Resolução	Precisão	Proteção contra sobrecargas
60.00Hz	0.01Hz		
600.0Hz	0.1Hz		
6.000kHz	0.001kHz		
60.00kHz	0.01kHz	\pm (1.0%leitura + 2dgt)	1000VCC/CArms
600.0kHz	0.1kHz		
6.000MHz	0.001MHz		
10.00MHz	0.01MHz		

Sensibilidade: >2.0Vrms (@ 20% ÷ 80% Ciclo de Trabalho (Duty Cycle)) e f<100kHz; >5Vrms (@ 20% ÷ 80% Ciclo de Trabalho (Duty Cycle)) e f>100kHz

Ciclo de Trabalho (Duty Cycle)

Escala	Resolução	Precisão
0.1% ÷ 99.9%	0.1%	±(1.2%leitura + 2dgt)

Escala de frequência do impulso: 5Hz ÷ 10kHz, Amplitude do impulso: ±5V (100μs ÷ 100ms)

Capacidade

Escala	Resolução	Precisão	Proteção contra sobrecargas
60.00nF	0.01nF	1/2 50/ loiture 1 10 dat)	
600.0nF	0.1nF	\pm (3.5%leitura + 10dgt)	
6.000μF	0.001μF		4000\/00/04
60.00μF	0.01μF	±(2.5%leitura + 10dgt)	1000VCC/CArms
600.0μF	0.1μF		
6.000mF	0.001mF	\pm (3.5%leitura + 10dgt)	

Temperatura com sonda K

Escala	Resolução	Precisão (*)	Proteção contra sobrecargas
-40.0°C ÷ 600.0°C	0.1°C	±(2.0%leitura + 3°C)	1000VCC/CArms
600°C ÷ 760°C	1°C		
-58.0°F ÷ 600.0°F	0.1°F	±(2.0%leitura+ 5.5°F)	
600°F ÷ 1400°F	1°F		

^(*) Precisão do instrumento sem sonda

6.1.1. Normas de referência

Segurança: IEC/EN61010-1 EMC: IEC/EN 61326-1 Isolamento: duplo isolamento

Nível de Poluição:

Categoria de sobretensão: CAT IV 600V, CAT III 1000V

Altitude máx. de utilização: 2000m

6.1.2. Características gerais Características mecânicas

Dimensões (L x A x H): 175 x 85 x 55mm

Peso (baterias incluídas): 360g

Alimentação

Tipo de bateria: 4x1.5V baterias tipo AAA IEC LR03

Indicação de bateria descarregada: símbolo "==== no display

Desligar Automático: após 15min de não utilização (desativável) F10A/1000V, 10 x 38mm (entrada **10A**) Fusíveis:

F800mA/1000V, 6 x 32mm (entrada **mAµA**)

Display

Conversão: **TRMS**

Características: 31/2 LCD, 6000 pontos, sinal, ponto decimal

4½ LCD, 60000 pontos, sinal, ponto decimal

retroiluminação e gráfico de barras

3 vezes/s Frequência de amostragem:

6.2. AMBIENTE

6.2.1. Condições ambientais de utilização

18°C ÷ 28°C Temperatura de referência: Temperatura de utilização: 5°C ÷ 40°C Humidade relativa admitida: <80%HR Temperatura de armazenamento: -20° ÷ 60°C Humidade de armazenamento: <80%HR

Este instrumento está conforme os requisitos da Diretiva Europeia sobre baixa tensão 2006/95/CE (LVD) e da diretiva EMC 2004/108/CE

Este instrumento está conforme os requisitos da Diretiva Europeia 2011/65/CE (RoHS) e da diretiva europeia 2012/19/CE (WEEE)

ACESSÓRIOS 6.3.

6.3.1. Acessórios fornecidos

- Par de ponteiras
- Adaptador + sonda tipo K
- Baterias
- Bolsa para transporte
- Manual de instruções

6.3.2. Acessórios opcionais

 Par de ponteiras Cód. KIT4000A Cód. TK107 Sonda tipo K para medir a temperatura do ar e gases Sonda tipo K para medir a temperatura de substâncias semi-sólidas Cód. TK108 Sonda tipo K para medir a temperatura de líquidos Cód. TK109 Sonda tipo K para medir a temperatura de superfícies Cód. TK110 Sonda tipo K para medir a temperatura de superfícies com ponta a 90° Cód. TK111

7. ASSISTÊNCIA

7.1. CONDIÇÕES DE GARANTIA

Este instrumento está garantido contra qualquer defeito de material e fabrico, em conformidade com as condições gerais de venda. Durante o período da garantia, as partes defeituosas podem ser substituídas, mas ao construtor reserva-se o direito de reparar ou substituir o produto.

No caso de o instrumento ser devolvido ao revendedor, o transporte fica a cargo do Cliente. A expedição deverá ser, em qualquer caso, acordada previamente. Anexa à guia de expedição deve ser inserida uma nota explicativa com os motivos do envio do instrumento. Para o transporte utilizar apenas a embalagem original; qualquer dano provocado pela utilização de embalagens não originais será atribuído ao Cliente. O construtor não se responsabiliza por danos causados por pessoas ou objetos.

A garantia não é aplicada nos seguintes casos:

- Reparação e/ou substituição de acessórios e baterias (não cobertos pela garantia).
- Reparações necessárias provocadas por utilização errada do instrumento ou da sua utilização com aparelhagens não compatíveis.
- Reparações necessárias provocadas por embalagem não adequada.
- Reparações necessárias provocadas por intervenções executadas por pessoal não autorizado.
- Modificações efetuadas no instrumento sem autorização expressa do construtor.
- Utilizações não contempladas nas especificações do instrumento ou no manual de instruções

O conteúdo deste manual não pode ser reproduzido sem autorização expressa do construtor.

Todos os nossos produtos são patenteados e as marcas registadas. O construtor reserva o direito de modificar as especificações e os preços dos produtos, se isso for devido a melhoramentos tecnológicos.

7.2. ASSISTÊNCIA

Se o instrumento não funciona corretamente, antes de contactar o Serviço de Assistência, verificar o estado das baterias e dos cabos e substituí-los se necessário.

Se o instrumento continuar a não funcionar corretamente, verificar se o procedimento de utilização do mesmo está conforme o indicado neste manual.

No caso de o instrumento ser devolvido ao revendedor, o transporte fica a cargo do Cliente. A expedição deverá ser, em qualquer caso, acordada previamente.

Anexa à guia de expedição deve ser inserida uma nota explicativa com os motivos do envio do instrumento.

Para o transporte utilizar apenas a embalagem original; qualquer dano provocado pela utilização de embalagens não originais será atribuído ao Cliente.

Via della Boaria, 40 48018 – Faenza (RA) – Italy Tel: +39-0546-0621002 (4 linee r.a.) Fax: +39-0546-621144 Email: ht@htitalia.it http://www.htitalia.com

MORGADO & CA., SA ESTRADA DA CIRCUNVALAÇÃO, 3558/3560 4435-186 RIO TINTO · TEL 229 770 600 · FAX 229 770 699 PORTUGAL

COORDENADAS N41.180946° W8.578015°

GERAL@MORGADOCL.PT WWW.MORGADOCL.PT

DELEGAÇÃO CENTRO VALES DA PEDRULHA

APARTADO 8057 3026-901 COIMBRA TEL 239 497 220 • FAX 239 497 229

DELEGAÇÃO SUL ALAMEDA DOS OCEANOS, N.º5 • ESC.4 1990-207 LISBOA TEL 219 898 750 • FAX 219 898 759